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1. Introduction

One of the most important advances in the study of the holographic duality between gauge

theories and string backgrounds was the generalization of the AdS/CFT correspondence

from D3-branes in flat space [1] to D3-branes probing Calabi-Yau (CY) singularities [2 – 4].

When the latter singularities are toric, a rigorous correspondence between the algebraic-

geometric properties of the singularity and the resulting quiver gauge theory has been

established over the years. In particular, it is very beautiful to see how the complex

equations characterizing the geometry arise by solving for the classical moduli space of the

N = 1 superconformal quiver gauge theory [5, 6].

In the case of the conifold singularity, it is known that there is a complex deformation

which leads to a smooth CY geometry, namely the deformed conifold. The latter geometry
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also arises as a moduli space of a quiver gauge theory [7], in which however we have to

depart from conformality and introduce a non-trivial renormalization group (RG) flow.

From the stringy point of view, this is triggered by the presence of fractional branes. It

is argued that in the deep IR one ends up with a confining SYM gauge theory, and the

deformation parameter of the geometry is related to the gaugino condensate. In fact, as

soon as some fractional branes are included, the quantum moduli space of the quiver gauge

theory separates in several branches, each one representing a number of regular branes

probing the deformed conifold [8]. More specifically, the branches associated to wandering

regular branes are mesonic branches from the gauge theory point of view, while the empty,

smooth geometry is associated to the baryonic branch of the quiver gauge theory.

However, this behavior is not the typical one. In other geometries, fractional branes

trigger an RG flow which, after a cascade of Seiberg dualities, does not end in confining

vacua, but rather in a theory which breaks supersymmetry with a runaway behavior [9 –

12], similarly to massless SQCD with Nf < Nc [13]. In the following, we will consider

the complex cone over the first del Pezzo surface, or in short dP1, as the representative of

such geometries. Its quiver gauge theory was derived in [14]. The dP1 is known to have an

obstructed complex deformation [15], that is, a complex deformation at first order which

however has to vanish at second order for consistency.

In the present paper, we consider in detail the possible solutions to the quantum F-term

equations of the dP1 quiver gauge theory. The classical moduli space is consistently lifted

everywhere, however we show that the F-terms can be satisfied at infinity in field space on

every mesonic branch, signalling a runaway behavior. There are as many runaway directions

as there are steps in the duality cascade. Moreover, along the runaway directions, the gauge

invariants reproduce the equations of the singularity deformed at first order. In other

words, the regular D3-branes are pushed to infinity, but as they run away, they are probing

a geometry corresponding exactly to the first order deformation of Altmann. Note that the

latter is not CY (and hence the background not supersymmetric) at quadratic order in the

deformation, while of course the gauge theory breaks supersymmetry because of the non-

vanishing F-terms. We hence observe a nice check of the gauge/string correspondence which

goes beyond the usual, protected, supersymmetric vacua but rather extends to situations

with only asymptotic supersymmetry.

The plan of the paper is the following. In section 2 we consider the classical moduli

space of the dP1 quiver gauge theory, paying attention to mesonic and baryonic branches

and their being decoupled. In section 3 we derive the quantum corrections, identifying

all the runaway directions and making the relation with the obstructed deformation of

the geometry. Some discussion is found in section 4. In appendix A, we apply the same

analysis as in the main text to study the various branches of the moduli space of the

conifold gauge theory, in order to “normalize” our approach in a well-known example. In

appendix B, we make a similar analysis of the runaway mesonic branch for the quiver gauge

theory corresponding to supersymmetry breaking fractional branes at the dP2 singularity,

for which we also derive the obstructed deformation.
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Figure 1: The dP1 quiver for N regular and M fractional branes.

2. The classical moduli space of the dP1 quiver gauge theory

The quiver gauge theory corresponding to D3-branes probing a dP1 singularity has gauge

group SU(N) × SU(N + 3M) × SU(N + M) × SU(N + 2M) and matter fields which can

be read out from the diagram reproduced in figure 1.

The superpotential is

Wtree = hTr(ǫαβY3ULαZURβ − ǫαβVαY2URβ + ǫαβVαULβY1), (2.1)

where we choose to trace over the node 3 gauge group indices. Remark that we only have

a diagonal SU(2) flavor symmetry. For later convenience, we already introduce variables

which are suitable for describing objects which are gauge invariant with respect to node 2,

the one with highest rank

Mα = ZURα, and Nα = Y2URα. (2.2)

The classical F-term equations derived from extremizing (2.1) are

ǫαβURαY3ULβ = 0, (2.3)

ǫαβVαULβ = 0, (2.4)

ǫαβURαVβ = 0, (2.5)

ǫαβULαZURβ = 0, (2.6)

VαY2 = Y3ULαZ, (2.7)

Y1Vα = ZURαY3, (2.8)

Y2URα = ULαY1. (2.9)

2.1 The mesonic branch

For generic N , we can build basic “loops” which consist of products of 3 or 4 bifundamentals

such that the resulting object has both indices in one gauge group [9]. We have a total of 12
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loops going through nodes 1-2-3-4, 6 loops going through nodes 1-3-4 and 6 loops through

nodes 2-3-4. It would thus seem that if we base ourselves on nodes 1 or 2 we will see less

loops and possibly a reduced moduli space. However this is not true because the F-terms

reduce the number of independent loops to 9, and eventually equate the eigenvalues of

the loops based on different nodes. We briefly sketch below how this happens. See also

appendix A where the same approach is applied in all details to the conifold gauge theory.

Let us for definiteness base ourselves on node 3. We immediately see that the loop

matrices will be distinguished by the number of SU(2) indices that they carry: one, two or

three. Using the F-terms, we have respectively

Y3ULαY1 = Y3Y2URα, (2.10)

VαULβY1 = VαY2URβ = Y3ULαZURβ = Y3UL(αZURβ), (2.11)

VαULβZURγ = V(αULβZURγ). (2.12)

In particular, we see that all the SU(2) indices are symmetrized because of the first four

F-term relations. We thus end up indeed with 9 elementary loops, which we can name as

follows, using the gauge invariants of node 2 introduced in (2.2)

a1 = Y3N1, b1 = Y3UL1M1, c1 = V1UL1M1,

a2 = Y3N2, b2 = Y3UL1M2, c2 = V1UL1M2,

b3 = Y3UL2M2, c3 = V2UL1M2,

c4 = V2UL2M2. (2.13)

These 9 matrices commute, as one can easily check, so we can diagonalize them all. More-

over, they are not independent. There are 20 quadratic relations between them, defining

the complex cone over the first del Pezzo as a 3 dimensional affine variety in C
9 [9]:

a1b2 = a2b1 a1b3 = a2b2 b2
2 = b1b3 b2

2 = a1c3

b2
2 = a2c2 b2

1 = a1c1 b2
3 = a2c4 a1c2 = b1b2

a1c4 = b2b3 a2c1 = b1b2 a2c3 = b2b3 b1c2 = b2c1

b1c3 = b2c2 b1c4 = b2c3 b2c3 = b3c2 b2c4 = b3c3

b2c2 = b3c1 c1c4 = c2c3 c2
2 = c1c3 c2

3 = c2c4

(2.14)

As complicated as they look, all the above relations can easily be seen to arise just by

considering that all quadratic objects with the same SU(2) indices must coincide and be

symmetrized.

Exactly the same conclusion can be reached considering loops on any one of the other

three nodes. Note that because of their definitions (and because of the above equations),

all loops are eventually matrices of rank N even when they are based on nodes of higher

rank. Moreover, the most generic situation is when all non vanishing eigenvalues are, say,

in the upper-left corner.

In conclusion, the moduli space is a N -symmetric product of the CY affine variety.

We write now an explicit parametrization for the classical moduli space, which means

solving for the D-terms and F-terms simultaneously. Our approach has been of course to

first solve the F-flatness conditions and then worry about the D-terms.

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
0

We adopt the solution of the F-terms given above by 9 mutually commuting matri-

ces (2.13) at every node. Choose for instance the loops

a
(3)
1 = Y3Y2UR1, a

(4)
1 = Y2UR1Y3, (2.15)

based at node 3 and 4, respectively. Our loops obviously cannot have rank larger than N .

Now use gauge freedom from gauge groups 3 and 4 to gauge fix

(a
(3)
1 )ij = (a

(3)
1 )iδi

j , (a
(4)
1 )ij = (a

(4)
1 )iδi

j , for i, j ≤ N, (2.16)

zero otherwise. Now, a
(3)
1 Y3 = Y3a

(4)
1 implies that, for generic vevs, Y3 is diagonal in the

upper-left N × N corner. One has (without summation):

(a
(3)
1 )iY i

3j = Y i
3j(a

(4)
1 )j ⇒ Y i

3j = 0 if i 6= j and (a
(3)
1 )i = (a

(4)
1 )i (2.17)

for i, j ≤ N , while for p > N ,

(a
(3)
1 )iY i

3p = 0, Y p
3i(a

(4)
1 )i = 0. (2.18)

Note that the components Y p
3q for p, q > N remain undetermined.

By similar arguments, we can arrive at the conclusion that all sets of basic loops based

on different nodes actually share the same eigenvalues, and all elementary fields have a

diagonal upper-left N ×N part and an undetermined lower-right piece whose dimension is

M × 2M for Y3, Vα, 2M × 3M for Y2 and 3M × M for URα. To summarize, we have thus

shown that all the bifundamental fields must have the form

X =

(
XD

N×N 0

0 X̃

)
. (2.19)

We assume for the moment that X̃ = 0 for all the fields, so that all the vevs are

diagonal. We list the additional constraints from the D-equations:

|Zi|
2 + |Y1i|

2 − |UL1i|
2 − |UL2i|

2 = 0, (2.20)

|UR1i|
2 + |UR2i|

2 − |Zi|
2 − |Y2i|

2 = 0, (2.21)

|V1i|
2 + |V2i|

2 + |Y3i|
2 − |Y1i|

2 − |UR1i|
2 − |UR2i|

2 = 0, (2.22)

|Y2i|
2 + |UL1i|

2 + |UL2i|
2 − |V1i|

2 − |V2i|
2 − |Y3i|

2 = 0, (2.23)

where i = 1, . . . N runs over the upper-left diagonal blocks. The pattern of higgsing of the

gauge group is

G = SU(N) × SU(N + 3M) × SU(N + M) × SU(N + 2M)

⊃ SU(N)diag × SU(3M) × SU(M) × SU(2M)

⊃ U(1)N−1 × SU(3M) × SU(M) × SU(2M), (2.24)

where the non-abelian part is the dP1 quiver for N = 0 (i.e. the triangle quiver), while

the U(1)’s are diagonal combinations of the Cartan subalgebras of the four nodes’ SU(N)

subgroups.
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2.2 The baryonic branches

Let us now consider the special case N = M , which we take as a case study of the more

general situation N = kM . In this case we can define baryonic gauge invariants for the

second node with SU(4M) gauge group, since it has effectively Nf = 4M .1

The mesonic gauge invariants of node two are Mα and Nα as defined in (2.2). They

are respectively pairs of M × 2M and 3M × 2M matrices. We can thus define a 4M × 4M

mesonic matrix as

M̃ ≡

(
M1 M2

N1 N2

)
. (2.25)

More generally, we can define the same matrix also when N 6= M and it will be (2N +

2M) × (2N + 2M). In the mesonic branch considered above, it is clear that the matrices

Mα and Nα are non zero only in the upper left rank N part. Hence, M̃ will be of maximal

rank 2N and detM̃ = 0. Actually, from the classical F-terms (2.9) we see that the matrices

Nα are each of maximal rank N (since there is a summation over SU(N) indices on the

r.h.s.) so that, when N = M we necessarily have detM̃ = 0 in any SUSY vacuum. This

is going to play an important role in the subsequent analysis.

In the N = M case we can define two baryonic invariants,

B ∝ (Y2)
3MZM ≡ det

(
Z

Y2

)
, (2.26)

B̄ ∝ (UR1UR2)
2M ≡ det

(
UR1 UR2

)
, (2.27)

where both matrices entering the definitions are 4M × 4M . Again, it is easy to see that on

the mesonic branch B, B̄ = 0 because of the non-maximal ranks of the matrices involved.

We now ask whether it is possible to have regions or branches of the moduli space

where the baryonic invariants are turned on. We see that we can use the F-term (2.7) in

order to form gauge invariants involving B. We get the equations

VαB = 0 = Y3URαB. (2.28)

This means that if B 6= 0, then Vα = Y3URα = 0 identically. It is easy to show that this in

turn implies that all basic loops (2.13) vanish. Similarly, from the F-terms (2.3) and (2.5)

we obtain

VαB̄ = 0 = Y3URαB̄, (2.29)

with the same conclusion of vanishing loops. Moreover, if B 6= 0 then B̄ has to vanish and

vice-versa because BB̄ = detM̃ = 0.

Thus we see that additionally to the mesonic branch, which consists of M symmetrized

copies of the complex cone over dP1, we have two one-complex dimensional baryonic

branches. All of the branches of the moduli space meet at the origin.

1Actually, baryonic gauge invariants can generally be defined, for any node, when N = kM . However

only when we have Nf = Nc for one node do the baryons become elementary effective fields at the quantum

level.
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In order to see what is the left over gauge group on the baryonic branches, we have to

solve for the D-terms.2 Because the loops are all zero, we are more constrained than on

the mesonic branch and the elementary fields will have VEVs proportional to the identity.

More explicitely, when B 6= 0 we turn on only the Z and Y2 fields. It turns out that we have

to take the left M × M part of Z and the right 3M × 3M part of Y2 proportional to the

identity, with the same constant of proportionality. The gauge group is broken according

to the following pattern:

G = SU(M) × SU(4M) × SU(2M) × SU(3M)

⊃ SU(M) × (SU(M) × SU(3M)) × SU(2M) × SU(3M)

⊃ SU(M)diag × SU(3M)diag × SU(2M). (2.30)

Thus, we get the triangular quiver, and the matter content can be checked to be the

expected one by standard higgsing arguments. Note that on the baryonic branch we do

not have a U(1)N−1 factor.

Similarly, on the B̄ 6= 0 branch we have that UR1 and UR2 have respectively their upper

and lower 2M × 2M parts proportional to the identity because of the D-terms. The gauge

group is broken according to

G = SU(M) × SU(4M) × SU(2M) × SU(3M)

⊃ SU(M) × (SU(2M) × SU(2M)) × SU(2M) × SU(3M)

⊃ SU(M) × SU(2M)diag × SU(3M), (2.31)

again obtaining the same theory, albeit embedded in a different way in the original gauge

group.

Note that the fact that at any point of the various branches of the moduli space we

still have a non-trivial gauge theory, namely the triangular quiver, means that each one of

this points actually corresponds to a moduli space of its own. In other words, every point

of the moduli space discussed here is itself a moduli space, which is the one discussed in

detail in [12, 16].

3. The quantum corrections to the dP1 moduli space

Here we wish to study how the classical picture is modified by quantum corrections. The

story in the N = kM case is by now well-known [9 – 11]. The gauge theory is non conformal

and is believed to undergo a non-trivial RG flow which takes the form of a cascade of Seiberg

dualities. The latter effectively reduce the ranks at every node by M at every step.3 At

the last step, one usually goes to the (quantum) baryonic branch and ends up with the

triangular quiver, which is runaway as we will rederive later (see [12, 16] for a discussion

on how one might stop this runaway behavior).

2Note that in this case the r.h.s. of the D-equations (2.20)–(2.23), i.e. the trace part, is non vanishing.
3That this RG flow has to be the one described by a gravity dual such as the ones in [17, 18] has been

argued in [19].
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In the language of the previous section, the above result can be stated by saying that

the baryonic branch of the second node becomes runaway because of quantum corrections

coming from another node (the fourth). Here we wish to address the question of what

becomes of the mesonic branch of the second node. Because the low energy gauge group is

still the triangular quiver, we also expect a runaway behaviour, but since the embedding

of the gauge group is different the runaway will be driven by different quantum effects.

Also, from the dual stringy perspective, on the mesonic branch we have regular D3-branes

around and the question is whether they will feel a potential, or what space they will seem

to be probing.

In the following, we start by considering the case N = M which hopefully captures

most of the physics we want to discuss. We will turn later to the more general case N 6= M .

3.1 Runaway on the baryonic branch

The effective superpotential for N = M is

W = hTr(ǫαβY3ULαMβ − ǫαβVαNβ + ǫαβVαULβY1) + L(detM̃ − BB̄ − Λ8M
2 ), (3.1)

where L is a superfield Lagrange multiplier.

The F-terms are the following

detM̃ − BB̄ = Λ8M
2 , (3.2)

LB = 0 = LB̄, (3.3)

ǫαβY3ULα = −L
∂ detM̃

∂Mβ
, (3.4)

ǫαβVα = L
∂ detM̃

∂Nβ
, (3.5)

ǫαβULαMβ = 0, (3.6)

ǫαβVαULβ = 0, (3.7)

MαY3 = Y1Vα, (3.8)

Nα = ULαY1. (3.9)

As in the classical case, if we want to satisfy (3.9), then the matrix M̃ is not of maximal rank

and detM̃ = 0. We are then automatically on the baryonic branch: the constraint (3.2)

forces the baryons B, B̄ to have non zero VEVs (at the quantum level they must be both

non vanishing), which in turn implies L = 0 from (3.3). Then, (3.4) and (3.5) imply that

Vα and Y3ULα are zero, which eventually means that all the loop variables are zero. We are

definitely on the baryonic branch which, as far as the dynamics of node two is concerned,

is still supersymmetric. At this stage, note that the mesonic branch has no chance of

appearing because non-vanishing loops would need L 6= 0 which would mean vanishing

baryons and detM̃ = Λ8M
2 , contradicting one of the F-terms.

So, we see that quantum effects at node two lift the mesonic branch but not the

baryonic one (which is the smooth merger of the two classical baryonic branches).

– 8 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
0

1

34

Y

U

1

L α

M

2M3M
Y3

αM

Figure 2: The last step of the cascade of the dP1 quiver for M fractional branes.

For the sake of completeness, we reproduce here the well-known result that the baryonic

branch is also eventually lifted by quantum corrections. Indeed, on the baryonic branch we

are left with a triangular quiver with gauge group SU(M)×SU(2M)×SU(3M) and matter

represented by ULα, Y1, Y3 and Mα (Vα and Nα have been integrated out because they

appear quadratically in (3.1)). The quiver is represented in figure 2. The matter content

is such that node four with gauge group SU(3M) has Nf = 2M < Nc flavors. Hence, an

ADS-like effective superpotential will be generated for its mesons Xα = Y3ULα

Weff = hTrǫαβXαMβ + M

(
Λ7M

4

det X̃

) 1

M

, (3.10)

where we have defined the 2M × 2M matrix X̃ ≡ (X1 X2) and Λ4 is the dynamical scale

of node four. It is clear that the F-terms will set Xα to zero while sending Mα to infinity.

This is the runaway direction at the last step of the cascade. In the following, we want to

see if there are other, disconnected runaway directions corresponding to the other branches

of the classical moduli space.

3.2 Runaway on the mesonic branch

For simplicity, we consider here solutions to the F-terms (3.2)–(3.9) in the special case

N = M = 1. We force being on the mesonic branch by requiring that L 6= 0 so that

B, B̄ = 0 and

detM̃ = Λ8. (3.11)

We immediately see that, if we are to find a solution to the F-terms, it will be runaway,

because the above condition conflicts with the rank condition following from (3.9). Hence,

both equations will be satisfied only if some elements of M̃ go to infinity as others go to

zero. The non-trivial task is to find a scaling for all the fields appearing above such that

all F-terms go to zero while loop variables remain non zero. The Lagrange multiplier L

– 9 –
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should also be large enough in order for this branch to be really disconnected from the

baryonic one, as it is the case classically.

All fields will thus have a non zero VEV assigned to their upper-left component, which

is the one entering in the loop variables. Additionally, at least the fields Nα will have to

have some non-zero component in the lower-right part. We will see that as a consequence

also Vα will need to have such a component. We thus take

Mα =
(

mα 0
)

, Nα =




nα 0

0 ǫα

0 δα


 , (3.12)

Y3 =

(
y3 0 0

0 0 0

)
, Vα =

(
vα 0 0

0 wα xα

)
, (3.13)

Y1 =
(

y1 0
)

, ULα =




uα

0

0


 . (3.14)

It is convenient to rewrite the effective superpotential (3.1) in terms of the above ansatz

W = y3uαmα − vαnα − wαǫα − xαδα + vαuαy1 − L(mαnαǫβδβ + Λ8), (3.15)

where all fields appearing are no longer matrices, and e.g. mα ≡ ǫαβmβ.

The F-terms simply read

uαmα = 0, (3.16)

vαuα = 0, (3.17)

y3mα = vαy1, (3.18)

nα = uαy1, (3.19)

ǫα = 0, (3.20)

δα = 0, (3.21)

y3uα = −Lnαǫβδβ , (3.22)

vα = −Lmαǫβδβ , (3.23)

wα = Lδαmβnβ, (3.24)

xα = −Lǫαmβnβ. (3.25)

The F-terms setting ǫα and δα to zero are clearly the ones violating the condition detM̃ =

Λ8. The constraint mαnαǫβδβ = −Λ8 will thus send mαnα to infinity. Actually we will

see that this scaling to infinity is subdominant with respect to the one of mα and nα. For

concreteness, let us take ǫ1 = δ2 = 0 and ǫ2 = δ1 = ǫ. As an immediate consequence,

x1 = w2 = 0. Moreover,

mαnα =
Λ8

ǫ2
, (3.26)

so that

y3uα = Lnαǫ2, vα = Lmαǫ2, w1 = L
Λ8

ǫ
, x2 = −L

Λ8

ǫ
. (3.27)
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Comparing with other F-terms, we see that y1 ∝ y3 and vα ∝ mα. Analyzing the scaling

of the basic loops (2.13), we see that it is consistent to take the same scaling for y,m, v

and u.4 In this way, all loops will scale in the same way and modding out by the (possibly

infinite) common factor we would obtain finite equations. We thus take

y1 = y3 = y, vα = mα. (3.28)

We see that this implies

L =
1

ǫ2
, w1 =

Λ8

ǫ3
, x2 = −

Λ8

ǫ3
. (3.29)

The Lagrange multiplier L goes to infinity, meaning that the mesonic branch analyzed here

is effectively very far from the baryonic branch described previously. Note that the scaling

to infinity behavior of w1 and x2 is related to the (additional) runaway behavior of the

left-over triangle quiver at any point of the mesonic branch. Indeed, in the present case, the

SU(3M) node at low energies is embedded also in the SU(4M) of the original quiver, and

thus the latter’s dynamical scale is also responsible for this “secondary” runaway behavior.

The most obvious way to satisfy the F-terms mαuα = 0 would be to take mα = uα.

But that would contradict the constraint. Hence, we must add a subdominant piece as

mα = uα + m′
α, so that

m′
αuα → 0 but ym′

αuα =
Λ8

ǫ2
. (3.30)

At this stage, there is some arbitrariness in the way we choose the scaling to zero of m′
αuα.

For definiteness, we choose all the non vanishing F-terms to scale in the same way.

Hence we take

m′
αuα = O(ǫ). (3.31)

This implies the following scaling for y

y = O(ǫ−3). (3.32)

As stated previously, we also take uα to scale in the same way, uα = O(ǫ−3). As a

consequence, m′
α = O(ǫ4). We can see that all the F-terms, and the constraint, are

satisfied as ǫ → 0.5 All the loops have a dominant piece which scales as O(ǫ−9). They can

actually all be expressed in terms of 3 variables, y, u1 and u2, so that

aα = y2uα, bαβ = yuαuβ, cαβγ = uαuβuγ . (3.33)

This just reproduces the fact that, away from the singularity, the space probed by the D3-

branes is locally C
3 and thus the 20 equations defining the complex cone can be solved in

terms of three complex variables. Note that we alternatively call b11 ≡ b1, b12 ≡ b2, b22 ≡ b3

and similarly for the cs.

4Actually, the D-flatness conditions will be satisfied only if we take the elementary fields to scale as

above.
5We are making the reasonable assumption that for large VEVs, the Kähler potential is close to being

the classical canonical one. Hence also the vacuum energy goes to zero.
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3.3 Recovering the first order complex deformation

Let us see in more detail how the subdominant piece in mα will come into the game, as an

ambiguity in defining the variables with mixed SU(2) indices, i.e. b12, c112 and c122. For

instance we can define

η ≡ b21 − b12 = Y3U
α
LMα = yuαm′

α = O(ǫ−2). (3.34)

The ambiguity increases as ǫ → 0, but is vastly subdominant with respect to the leading

behavior of b. Hence at infinity one finds back the algebraic description (2.14). This

shows that, indeed, one can have a supersymmetric configuration on the mesonic branch

corresponding to a D3-brane at infinity.

There is a first order complex deformation of the first del Pezzo cone, which was given

by Altmann [15] (see also [9]):

a1(b2 − 3σ) = a2b1 a1b3 = a2b2

b2(b2 − 3σ) = b1b3 b2(b2 − 2σ) = a1c3

b2(b2 − 4σ) = a2c2 b2
1 = a1c1

b2
3 = a2c4 a1c2 = b1(b2 − σ)

a1c4 = b2b3 a2c1 = b1(b2 − 3σ)

a2c3 = (b2 − 2σ)b3 b1c2 = (b2 − σ)c1

b1c3 = (b2 − σ)c2 b1c4 = (b2 − σ)c3

(b2 − 2σ)c3 = b3c2 (b2 − 2σ)c4 = b3c3

(b2 − 2σ)c2 = b3c1 c1c4 = c2c3

c2
2 = c1c3 c2

3 = c2c4

(3.35)

It is natural to ask whether there is a relation between our ambiguity parameter η and this

deformation parameter σ, which we recall has to satisfy σ2 = 0 for consistency. We note

here that Altmann’s deformation only affects the relations where b2 ≡ b12 appears. In our

case, also c2 and c3 would likely be affected.

In order to take into account the ambiguity, we give a more general definition of the

loop variables, keeping the distinction between uα and mα. It reads as follows

a1 = y2u1, b1 = yu1m1, c1 = u1m
2
1,

a2 = y2u2, b2 = yu1m2, c2 = u1m1m2,

b3 = yu2m2, c3 = u1m
2
2,

c4 = u2m
2
2. (3.36)

The ambiguity will arise when terms like b21 appear. It is taken care of by defining

u2m1 = u1m2 + η′. (3.37)

We can now use the above definitions to write how the relations (2.14) are deformed

a1(b2 + η) = a2b1 a1b3 = a2b2 b2(b2 + η) = b1b3 b2
2 = a1c3

b2(b2 + η) = a2c2 b2
1 = a1c1 b2

3 = a2c4 a1c2 = b1b2

a1c4 = b2b3 a2c1 = b1(b2 + η) a2c3 = b2b3 b1c2 = b2c1

b1c3 = b2c2 b1c4 = (b2 + η)c3 (b2 + η)c3 = b3c2 b2c4 = b3c3

(b2 + η)c2 = b3c1 c1c4 = c2(c3 + η̃) c2
2 = c1c3 c3(c3 + η̃) = c2c4

(3.38)
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where we have defined η̃ = m2η
′. As we had anticipated, some relations involving only cs

are also deformed, in contradistinction with (3.35). However, it is possible to shift the c2

and c3 variables in such a way that the last three relations above are not deformed. This

is realized by

c2 = c′2 −
1

3
m1η

′, c3 = c′3 −
2

3
m2η

′. (3.39)

As with Altmann’s deformation, we are here only considering the first order deformations,

that is we formally impose η′2 = 0.

Using now the shifted variables above, we can rewrite all the relations (3.38). For

instance, take the upper right one, b2
2 = a1c3. In terms of the shifted variables it reads

b2

(
b2 +

2

3
η

)
= a1c

′
3, (3.40)

so that after identifying

η ≡ −3σ, (3.41)

we recover exactly the right deformed equation as in (3.35). Performing the same shifts

in the other relations we recover exactly, including all numerical factors, the deformations

found by Altmann.

We thus see that regular D3-branes probing the geometry not only know about the

singular cone, but also about its first order complex deformation. It is because the defor-

mation is only supersymmetric at first order that the branes are pushed to infinity on the

mesonic branch.

We note here that a supergravity approach to deforming the cone over dP1 in the

gauge/gravity context has appeared in [20]. It is not immediately clear whether the first

order deformation discussed there exactly maps to Altmann’s, described by σ above. It

would be very interesting to understand how the deformation of [20] translates into the

equations defining the CY cone.

3.4 Runaway in the N 6= M cases

Having understood in detail the previous case, we can work out in all generality the case

N 6= M along very similar lines. As in the conifold case treated in appendix A, we assume

that the effect of the quantum dynamics is to produce an effective ADS-like term in the

superpotential. This is really the ADS superpotential generated by instanton or gaugino

condensation effects when N < M . For N > M , the term can be thought of as the result

of integrating out the magnetic quarks when the mesons have (large) VEVs. In any event,

the form of the potential is completely fixed, up to a numerical factor, by the symmetries

of the problem. Hence, we write

W = hTr(ǫαβY3ULαMβ − ǫαβVαNβ + ǫαβVαULβY1) + (M − N)

(
ΛN+7M

2

detM̃

) 1

M−N

. (3.42)

– 13 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
0

The F-term equations derived from the superpotential above will be much similar as before.

The eqs. (3.6)–(3.9) remain unchanged, while the eqs. (3.4)–(3.5) become

ǫαβY3ULα =

(
ΛN+7M

2

detM̃

) 1

M−N 1

detM̃

∂ detM̃

∂Mβ

, (3.43)

ǫαβVα = −

(
ΛN+7M

2

detM̃

) 1

M−N 1

detM̃

∂ detM̃

∂Nβ

. (3.44)

Of course, the F-terms involving the baryons are no longer present. In the following it will

be convenient to introduce the shorthand

L ≡

(
ΛN+7M

2

detM̃

) 1

M−N

. (3.45)

We can now attempt to solve the F-terms using an ansatz exactly similar to (3.12)–(3.14),

except that now mα, nα, y3, vα, y1 and uα are N × N diagonal matrices, while ǫα, δα, wα

and xα are M × M diagonal matrices.

We can further simplify the problem by taking all the matrices to be proportional to the

identity. Of course, as far as the N ×N matrices are concerned, we really want ultimately

all the eigenvalues to be distinct, but the scalings discussed below will not change.

Thus, introducing the ansatz above in the F-term equations, we will obtain simplified

equations which consist of (3.16)–(3.21) together with (up to an N,M -dependent sign)

y3uα = L
1

mβnβ
nα, (3.46)

vα = L
1

mβnβ
mα, (3.47)

wα = −L
1

ǫβδβ
δα, (3.48)

xα = L
1

ǫβδβ
ǫα. (3.49)

We then again take ǫ1 = δ2 = 0 and ǫ2 = δ1 = ǫ. This implies x1 = w2 = 0. We further

simplify and solve more F-terms by taking y1 = y3 = y, vα = mα and nα = yuα. Then the

F-terms (3.46)–(3.47) are solved by

L = ymαuα. (3.50)

We eventually recover as before that all the F-terms are satisfied if we take ǫ → 0 together

with

mαuα = O(ǫ). (3.51)

This again implies that there is a subleading component in mα, and we made the (arbitrary)

choice of scaling all the non-vanishing F-terms to zero in the same way.
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The scaling (to infinity) of y is determined in the following way. Eq. (3.50) becomes

now L = yO(ǫ). However L is an expression involving y and ǫ. Indeed, up to a sign

detM̃ = yN (mαuα)Nǫ2M ∼ yNǫN+2M . (3.52)

It is then easy to see that L ∼ yǫ implies

y = O(ǫ−3). (3.53)

We can then also take uα to scale in the same way. Thus, all the scalings are exactly the

same as in the previous simple case of N = M = 1, and we are led to the same conclusions

regarding the asymptotic behavior of the loop variables and their ambiguities.

In particular, the ambiguity parameter η which is eventually equated to the first order

deformation parameter, is directly proportional to L, which in turn is proportional to the

gaugino condensate S for the second node (strictly speaking, in the case N < M).

Note that with the scalings above, L = O(ǫ−2). Thus it scales like the Lagrange

multiplier in the previous case, and actually one can show that it is indeed formally replaced

by the Lagrange multiplier when N = M in all generality. This scaling also implies that

the gaugino condensate grows unboundedly along the runaway direction.

As a last curiosity, we can compute how the determinant scales

detM̃ ∼ ǫ2(M−N). (3.54)

Quite intuitively, the determinant goes to zero when it has a predominance of zero eigen-

values (in the N < M case) while it goes to infinity when there are more eigenvalues scaling

to infinity (when N > M).

The global picture after this analysis is the following. If we start with a number of

regular branes N much larger than the number of fractional ones M , we see that we always

have the option of trying to explore the mesonic moduli space, which is represented by the

regular branes wandering around the geometry. However, this mesonic moduli space, for

any value of N , is actually lifted because of the presence of the fractional branes, and the

regular branes are pushed to infinity (as anticipated in [10] for the case of one probe regular

D3-brane), where they explore a geometry very close to the singular complex cone over

dP1. This runaway behavior seems to have the same strength irrespective of the relative

numbers N and M . However we recall that there was some freedom to choose the scaling

of the variables, so that this dynamical issue is not settled at this level of the analysis.

At any given N , one has however also the option of exploring the “baryonic” branch of

the moduli space, which for N > M amounts to performing a Seiberg duality on the second

node. This restitutes the same quiver but with ranks shifted according to N → N − M .

Then at any further step one finds again the alternative between going on a runaway

mesonic branch or performing a further step. At the last step, we either end up with a

runaway mesonic branch at N < M , or if N = M , we have a last option of going toward a

baryonic branch, which however is itself runaway (albeit differently) as was already known.

Note that in this last case, we do not have a pictorial way of representing the runaway as

some branes being pushed to infinity. It would be nice to understand this better.
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4. Discussion

It was suggested in [9] that there was a one to one correspondence between CY singulari-

ties with obstructed deformations and quiver gauge theories with runaway supersymmetry

breaking in the deep IR. In the present paper we have shown that, in the example of the

dP1 geometry, the relation is even more precise. At higher steps of the cascade, there is also

a runaway behavior along the mesonic branches, which reproduce exactly the first order

deformation of the geometry. Given the genericity of runaway behavior in quiver gauge

theories (see e.g. [21, 22]), we expect that obstructed deformations can be reproduced sim-

ilarly in generic toric singularities, even when non-obstructed deformations are possible.

Indeed, in appendix B we show that this is true for the dP2 singularity.

It is nice to see that the correspondence between quiver gauge theories and D-branes

at singularities remains valid beyond issues pertaining to supersymmetric vacua. This

was also argued to hold for theories displaying metastable vacua (see [23] for examples

where metastability can be argued for on both sides of the correspondence). The situation

discussed here is qualitatively different and can thus be considered as further evidence.

On the mesonic branches, the runaway is naturally interpreted as D3-branes being

pushed to infinity. Unfortunately we do not have as nice an interpretation of the runaway

along the baryonic branch. As argued in [10], it could be related to the blowing up of

a closed string modulus, namely a dynamical FI term. This blown-up background must

somehow have an unbalanced D3-charge/tension ratio, so that the additional regular D3

branes feel a repulsive force in its presence. Based on the findings presented here, it is

tempting to speculate that if a supergravity dual of the baryonic branch runaway exists,

a crucial role in its construction should be played by a (non-supersymmetric) completion

of the first order deformation of the dP1 cone. Moreover, there should be a signal of a

diverging gluino condensate. Presumably, a singularity is impossible to avoid, at least in a

static solution.

Having many runaway directions might eventually be interesting in cosmology, which

is the only framework to make sense of such theories with no vacuum. In particular, there

can be different regions of the universe where the runaway is taking place along a different

direction. There would then be domain walls between those regions (possibly bubble walls

if the runaway is faster in some specific direction). Those will be NS5-branes wrapped on

the topological S3 of the base. This can be seen using the same arguments as in [24, 19] and

noticing that the domain walls would interpolate between regions with a different number of

D3-branes. Note that for the domain wall tension to be non vanishing, the 3-cycle wrapped

by the NS5-branes must be of finite size. This is non trivial in the absence of a consistent

deformation (i.e. a blown up 3-cycle). We are left to suppose that the 3-form flux sourced

by the fractional branes somehow prevents the collapse of the NS5-brane worldvolume,

possibly due to dynamics which is necessarily time-dependent.
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A. Classical and quantum moduli spaces of the conifold theory

We consider here the warm-up example of the quiver gauge theory resulting from N D3-

branes at a conifold singularity, with the addition of M fractional branes. The gauge groups

are SU(N) × SU(N + M), and there are two pairs of bifundamentals Ai
αa and Ba

αi where

α = 1, 2 and i and a are indices in the first and second gauge group respectively. We aim

here at reproducing in a compact way the results of [8].

A.1 Classical analysis

The classical tree level superpotential is

W = hAi
αaB

a
βjA

j
γbB

b
δiǫ

αγǫβδ. (A.1)

From it we derive the F-terms

Ai
αaB

a
βjA

j
γbǫ

αγ = 0, Ba
βjA

j
γbB

b
δiǫ

βδ = 0. (A.2)

The above F-terms can be written in a more interesting way if contracted so as to form

gauge invariants of the first or the second gauge group. We call M i
αβj = Ai

αaB
a
βj and

M̃a
αβb = Ba

αiA
i
βb, and we obtain, in matrix notation

MαβMγδǫ
αγ = 0 = MαβMγδǫ

βδ, M̃αβM̃γδǫ
αγ = 0 = M̃αβM̃γδǫ

βδ. (A.3)

The above equations read, component by component

M11M21 = M21M11, M11M22 = M21M12,

M12M21 = M22M11, M12M22 = M22M12,

M11M12 = M12M11, M11M22 = M12M21,

M21M12 = M22M11, M21M22 = M22M21, (A.4)

or, in a more compact way

[Mαβ,Mγδ ] = 0, M11M22 − M12M21 = 0. (A.5)

The same holds for the matrices M̃αβ . As a consequence, using gauge transformations of

SU(N) and SU(N +M) respectively, one can diagonalize both sets of 4 commuting matrices

Mαβ and M̃αβ . Note that the latter matrices are not of maximal rank N + M , but rather

only of rank N . Hence, they will have generically M vanishing eigenvalues.
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Eigenvalue by eigenvalue, we have that

m
(i)
11m

(i)
22 − m

(i)
12m

(i)
21 = 0. (A.6)

These are N copies of the equation defining the conifold singularity, xy = uv. If we define

M ≡

(
M11 M12

M21 M22

)
, (A.7)

we immediately see that

detM = 0. (A.8)

As for M̃αβ , we can take the first N entries of, say, M̃11 to be non vanishing. Then the

relations similar to (A.6) are most generically satisfied by non vanishing eignevalues when

also the other 3 matrices have non vanishing first N entries.

At this stage, let us go back to the F-term conditions written in terms of the elementary

fields. For instance, we have the following expression (even before imposing the F-terms)

M11A1 = A1B1A1 = A1M̃11. (A.9)

For a generic matrix A1 and M11, M̃11 as above, we have

m
(i)
11Ai

1a = Ai
1am̃

(a)
11 . (A.10)

As we need some components of A1 to be non zero (since after all M11 and M̃11 are built

from it), we see that we must have m
(i)
11 = m̃

(i)
11 and Ai

1a = 0 for i 6= a.

Now, using the F-terms we also obtain that

M12A1 = A1M̃21, M21A1 = A1M̃12, M22A1 = A1M̃22, (A.11)

so that

m
(i)
12 = m̃

(i)
21 , m

(i)
21 = m̃

(i)
12 , m

(i)
22 = m̃

(i)
22 . (A.12)

Finally, using relations based on A2B2A2, B1A1B1 and B2A2B2 we obtain that all elemen-

tary fields Aα, Bα can be taken to be diagonal in their upper/left N × N piece.

Note that we did not use until now information coming from requiring D-flatness. The

only constraint left is

|a
(i)
1 |2 + |a

(i)
2 |2 = |b

(i)
1 |2 + |b

(i)
2 |2. (A.13)

A.2 Quantum analysis

We now want to take into account quantum corrections to the above story. We do this

by considering that the node with largest rank SU(N + M) goes to strong coupling first.

Then, its dynamics should be effectively described by gauge invariants, which in this case

are the Mαβ matrices with indices in the first gauge group, which will be considered as

classical in these considerations.

The quantum corrections in a region of the moduli space where the mesons Mαβ have

large enough VEVs (i.e. the so-called mesonic branch) are captured by adding an ADS-like
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superpotential. It can be seen to arise in the Seiberg dual picture from integrating out the

dual magnetic quarks which are massive because of the mesonic VEVs. We thus write

Weff = hMαβMγδǫ
αγǫβδ − (N − M)

(
ΛN+3M

detM

) 1

M−N

, (A.14)

where Λ is the dynamical scale of the strongly coupled node. Note that for N < M , this is

really an ADS superpotential. For N > M , the determinant has actually a positive power.

The case N = M is analyzed below in more detail.

Extremizing with respect to Mαβ, we obtain

h

(
M22 −M12

−M21 M11

)
=

(
ΛN+3M

detM

) 1

M−N

M−1. (A.15)

Multiplying by M these equations from the right and from the left, we obtain matrix

equations which imply

[Mαβ ,Mγδ ] = 0, M11M22 − M12M21 =
1

h

(
ΛN+3M

detM

) 1

M−N

. (A.16)

As before, the matrices Mαβ can all be simultaneously diagonalized, and their eigenvalues

must satisfy

m
(i)
11m

(i)
22 − m

(i)
12m

(i)
21 =

1

h

(
ΛN+3M

∏
j(m

(j)
11 m

(j)
22 − m

(j)
12 m

(j)
21 )

) 1

M−N

. (A.17)

Taking the product of all the N such equations, we eventually obtain

detM =
∏

i

(m
(i)
11m

(i)
22 − m

(i)
12m

(i)
21 ) =

(
hN−MΛN+3M

) N
M . (A.18)

Reinserting in (A.17), we obtain

m
(i)
11m

(i)
22 − m

(i)
12m

(i)
21 =

(
hN−MΛN+3M

) 1

M = Λ4(hΛ)
N−M

M . (A.19)

We thus see that we have N copies of the deformed conifold, defined by xy −uv = ǫ. Note

that the deformation parameter is parametrically smaller as N is increased, since h can be

taken to be of the order of the inverse string scale.6

Thus we see that when fractional branes are present, the moduli space probed by

regular branes is smoothened to the deformed conifold because of quantum effects.

When there are no fractional branes, M = 0, the equations (A.17) can be satisfied only

if detM = 0, which implies eventually (A.6), i.e. the moduli space remains the classical,

singular conifold.

Note that there is a subtle point in this specific case. The F-terms (A.15) would seem

to imply that the mesons actually have to vanish. This is clearly a too strong constraint.

Hence, requiring F-flatness of the effective superpotential in this case seems to be mislead-

ing. Possibly, this is due to the strictly conformal nature of the quiver gauge theory, which

prevents us to consider one node as strongly coupled and the other as classical.

6The string scale is effectively warped down from its true value in the deep UV. This can be seen as an

effect of the cascading RG flow.
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A.3 When baryonic branches are present

We are left to analyze the case N = M , which we take to be a case study of the case

N = kM where baryonic operators are allowed. At the classical level, we can write two

more gauge invariants of the second node, which turn out to be gauge invariant also with

respect to the first one. Indeed, node two has Nf = Nc and we can write

B = ǫi1...i2M
ǫa1...aM ǫb1...bM Ai1

1a1
. . . AiM

1aM
A

iM+1

2b1
. . . Ai2M

2bM
,

B̃ = ǫi1...i2M ǫa1...aM
ǫb1...bM

Ba1

1i1
. . . BaM

1iM
Bb1

2iM+1
. . . BbM

2i2M
. (A.20)

Still at the classical level, we see that we can form new gauge invariants from the F-terms

such as

MαβB = 0, MαβB̃ = 0. (A.21)

It implies that we can turn on either the baryonic VEVs or the mesonic ones, but not both

at the same time. Moreover, the classical constraint detM = BB̃ implies that detM = 0

on the mesonic branch (this was already derived above) and that BB̃ = 0 on the baryonic

branch, which is thus separated in two components.

The mesonic branch is derived exactly as before, so that the complete moduli space in

this case is the sum of the symmetric product of M copies of the conifold (parametrized

by Mαβ) and two complex lines (parametrized by B and B̃). All three components of the

moduli space meet at the origin of each branch.

At the quantum level, the effective strongly coupled dynamics of the second node

induces a deformation of its classical moduli space. Such a deformation is encoded in the

following effective superpotential which includes a Lagrange multiplier L

Weff = hMαβMγδǫ
αγǫβδ + L(detM−BB̃ − Λ4M ). (A.22)

The F-terms are the following

h

(
M22 −M12

−M21 M11

)
= L(detM)M−1, (A.23)

LB = 0 = LB̃, (A.24)

together with the constraint

detM−BB̃ = Λ4M . (A.25)

It is clear that we have a baryonic branch where the B, B̃ 6= 0. This implies that L = 0 and

in turn Mαβ = 0. The two classical baryonic branches have merged into one BB̃ = −Λ4M .

If we want the mesons to be non vanishing, we need to have L 6= 0, which forces

the baryons to vanish. Then we automatically get detM = Λ4M , the Mαβ commute and

eigenvalue by eigenvalue we have

m
(i)
11m

(i)
22 − m

(i)
12m

(i)
21 = Λ4, (A.26)

which also sets L = hΛ4−4M .
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Thus we see that at the quantum level, we still have two components, one being the

one complex dimensional baryonic branch and the other being the symmetric product of M

copies of the deformed conifold. This time the two branches are both completely smooth7

and do not touch.

The full moduli space of the theory for a given N , can be derived component by

component in the way described here, reproducing the results of [8]. The first component

is described by N copies of the deformed conifold, corresponding to the mesonic branch.

However if the mesons are not given VEVs, one can Seiberg dualize the strongly coupled

node and reach a theory where effectively N is replaced by N − M . At every step in this

cascade of dualities there is a component of the moduli space which will be described by

N −kM copies of the deformed conifold. If N is a multiple of M , we end up with a smooth

baryonic branch, while if it is not the smallest component of the moduli space will still be

a mesonic branch corresponding to N − kmaxM < M D3 branes on the deformed conifold.

B. Quantum corrections to the dP2 moduli space

B.1 The space of complex deformations for dP2

The complex cone over dP2 admits two different kinds of fractional branes, according to

the classification of [10]. One is a deformation brane, corresponding to a complex structure

deformation of the cone. The corresponding gauge theory was studied in detail in [25],

where it was shown that the deformed chiral algebra encodes precisely the complex defor-

mation computed according to Altmann’s rules [15]. The second fractional brane allowed

by the geometry is a so called supersymmetry breaking (SB) brane, which corresponds in

this case to an obstructed complex deformation of the geometry.

This section follows closely the work of [25], to which we refer for further details on

the application of Altmann’s techniques. Using the usual toric geometry techniques, one

can describe the dP2 cone as an affine variety in C
8. Let (a1, a2, b1, b2, b3, c1, c2, d) ∈ C

8 be

the complex coordinates corresponding to the generators of the dual toric cone σ∨. There

are 14 relations amongst these:

b2
2 = b1b3, b2

2 = a1c2, b2
2 = c1a2,

c2
1 = b1d , c2

2 = b3d ,

b1a2 = b2a1, c1b2 = c2b1, b2a2 = b3a1,

c1b3 = c2b2, b1b2 = c1a1, b2b3 = c2a2,

c1c2 = b2d , c1b2 = a1d , c2b2 = a2d .

(B.1)

The Minkowski cone (that is the cone of Minkowski summands of the toric diagram) is

given by

(t1, . . . , t5) s.th. P1(t) = t1 − t2 − t3 + t5 = 0,

P2(t) = t1 + t2 − t4 − t5 = 0, (B.2)

7Except of course for singularities due to the symmetric product orbifold action.
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and ti ≥ 0. We parametrise it by

t1 = t, t2 = t − s1, t3 = t − s2, t4 = t + s2, t5 = t − s1 − s2. (B.3)

The space of deformations is given by imposing the further constraints P1,2(t
2) = 0. We

thus have s1 and s2 subject to the quadratic constraints

s1s2 = 0, s2
2 = 0. (B.4)

Clearly, one solution is s2 = 0. This corresponds to the deformation brane case studied

in [25]. But we are interested here in the case s1 = 0, s2
2 = 0. Then, s2 corresponds to

a first order deformation obstructed at second order (corresponding to the SB branes),

similarly to the dP1 case. Running Altmann’s algorithm, which replaces the coordinate b2

by the five new variables ti, we can show that the 14 relations (B.1) become

t21 = b1b3, t2t4 = a1c2, t1t2 = c1a2,

c2
1 = b1d, c2

2 = b3d,

b1a2 =
t2
1

t4
a1, c1t1 = c2b1, t4a2 = b3a1,

c1b3 = c2t1 b1
t2t4
t1

= c1a1, t2b3 = c2a2,

c1c2 = t1d, c1
t2t4
t1

= a1d, c2t2 = a2d.

(B.5)

Restricting to the case s1 = 0, s2
2 = 0, we see that t1 = t2, t3 = t5, and (renaming t = b2,

s2 = σ) we eventually find

b2
2 = b1b3, b2(b2 + σ) = a1c2, b2

2 = c1a2,

c2
1 = b1d, c2

2 = b3d,

b1a2 = (b2 − σ)a1, c1b2 = c2b1, (b2 + σ)a2 = b3a1,

c1b3 = c2b2 b1(b2 + σ) = c1a1, b2b3 = c2a2,

c1c2 = b2d, c1(b2 + σ) = a1d, c2b2 = a2d.

(B.6)

Notice that indeed, for consistency, it implies that we must have σ2 = 0.

B.2 Classical moduli space

When N D3-branes, M SB branes and P deformation branes are present on the dP2 cone,

the corresponding gauge theory has an SU(N + M + P ) × SU(N + 2M) × SU(N + M) ×

SU(N) × SU(N + P ) gauge group. We study here the P = 0, N = M = 1 case. The field

content can be read from the quiver in figure 3.

The tree level superpotential is given by

Wtree = W ′Y A − XY V ′ − ACU ′ + XZU ′V + BCUV ′ − W ′ZUV B, (B.7)

where the trace is implied.

Using the F-conditions, there is a minimal set of 8 loops of the quiver that generate

all mesonic gauge invariants, the chiral primaries. These are given by

a1 = XY V, b1 = BCU ′V, c1 = BCU ′V ′,

a2 = XZUV, b2 = XZU ′V, c2 = XZU ′V ′,

b3 = XZUV ′, d = BW ′ZU ′V ′,

(B.8)
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Figure 3: The dP2 quiver.

where we chose to base all loops at the first node. Note that there is a grading in term

of the number of primed fields. There are 14 relations amongst these 8 fields, defining the

complex cone over dP2 as in (B.1).

B.3 Runaway on the mesonic branch

We will consider the quantum corrections from the second node to be dominant. It has

gauge group SU(3) and Nf = Nc. As for dP1, we must consider its mesons as effective

fields,

M1 = XY, M2 = XZ, (B.9)

M3 = W ′Y, M4 = W ′Z. (B.10)

Let us also define the (3 × 3) meson matrix,

M̃ ≡

(
M1 M2

M3 M4

)
. (B.11)

The quantum contribution to the superpotential is of course

Wqu = L(detM̃ − B̄B̄ − Λ6
2). (B.12)

We want to analyse the behavior of the mesonic branch, so we will impose the above

constraint as detM̃ = Λ6
2. Similarly to the dP1 case, we can take all bifundamental fields

to be upper-left diagonal:

M1 =

(
m1 0

0 ǫ

)
, M2 =

(
m2

0

)
, M3 =

(
m3 0

)
, M4 = m4,

A =

(
a

0

)
, B =

(
b

0

)
, C = c,

U =
(

u 0
)

, V =

(
v 0

0 0

)
, U ′ =

(
u′ 0

)
, V ′ =

(
v′ 0

0 ṽ′

)
.

(B.13)
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The non-upper-left elements ǫ and ṽ′ are of course there to reconcile the rank condition

and the constraint.

The constraint is thus

detM̃ = ǫ(m1m4 − m2m3) = Λ6
2. (B.14)

With the parametrisation above, the VEVs of the bifundamentals are c-numbers, and

the superpotential is given by

W = m3a − m1v
′ − ǫṽ′ − acu′ + m2u

′v + bcuv′ − m4uvb

+L(ǫ(m1m4 − m2m3) − Λ6
2). (B.15)

The F-terms are

Fa = m3 − cu′ = 0, (B.16)

Fb = cuv′ − m4uv = 0, (B.17)

Fc = −u′a + uv′b = 0, (B.18)

Fu = v′bc − vbm4 = 0, (B.19)

Fv = m2u
′ − bm4u = 0, (B.20)

Fu′ = −ac + vm2 = 0, (B.21)

Fv′ = −m1 + bcu = 0, (B.22)

Fṽ′ = −ǫ = 0, (B.23)

Fǫ = −ṽ′ + L(m1m4 − m2m3) = 0, (B.24)

Fm1
= −v′ + Lǫm4 = 0, (B.25)

Fm2
= u′v − Lǫm3 = 0, (B.26)

Fm3
= a − Lǫm2 = 0, (B.27)

Fm1
= −uvb + Lǫm1 = 0. (B.28)

Clearly, (B.23) is incompatible with (B.14) unless (m1m4 − m2m3) =
Λ6

2

ǫ
→ ∞. We can

solve for Fmi
= 0 by taking L = Λ6

2/ǫ (so that the baryonic branch indeed decouples as ǫ

goes to zero), and

m1 = uvb, m2 = a,

m3 = u′v m4 = v′. (B.29)

Then the other F-terms imply c = v. Moreover, (B.14) becomes

m1m4 − m2m3 = v(ubv′ − au′) = vFc =
Λ6

2

ǫ
. (B.30)

We can choose Fc to scale to zero as

Fc = uv′b − u′a = O(ǫ), (B.31)
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It implies that v must scale as

v = c = O(ǫ−2). (B.32)

One can then easily check that all F-terms are satisfied, with Fc = Fv = 0 that must be

satisfied in the limit ǫ → 0. By taking the simplest solution v = c, u = b, a = ub = b2,

u′ = v′, one can express (B.8) in term of (b, c, u′) ∈ C
3:

a1 = b2c2, b1 = bc2u′, c1 = bc(u′)2,

a2 = b3c, b2 = b2cu′, c2 = b2(u′)2,

b3 = b3u′, d = b(u′)3, (B.33)

which implies the 14 relations (B.1). Note that all coordinates go to infinity as ǫ−8.

B.4 Recovering the first order complex deformation

To conclude, let us show that the gauge theory result reproduces the first order complex

deformation (B.6). The ambiguity coming from solving (B.31) can be accounted for by

defining

v′ = u′ + η̃. (B.34)

Let us solve for the loops as in (B.33), but taking this ambiguity into account:

a1 = b2c2, b1 = bc2u′, c1 = bcu′v′,

a2 = b3c, b2 = b2cu′, c2 = b2u′v′,

b3 = b3v′, d = bu′(v′)2. (B.35)

Now it is an easy matter to construct the deformed relations amongst the variables

of (B.35). We find

b2(b2 + η) = b1b3, b2(b2 + η) = a1c2, b2(b2 + η) = c1a2,

c2
1 = b1d, c2(c2 + η′) = b3d,

b1a2 = b2a1, c1b2 = c2b1, a2(b2 + η) = b3a1,

c1b3 = c2(b2 + η) c1a1 = b1(b2 + η), b2b3 = c2a2,

c1c2 = b2d, c1(b2 + η) = a1d, c2(b2 + η) = a2d,

(B.36)

where η = b2cη̃ and η′ = b2u′η̃. The ambiguity parameters go to infinity as ǫ−1, so they

are subdominant with respect to the loop variables.

We again need to shift some variables to make contact with (B.6). An appropriate

shift is

b2 → b2 −
1

2
η, c2 → c2 −

1

2
η′. (B.37)

Of course, when plugging this into (B.36), one should consider η2 = 0 and use the rela-

tions (B.1) when necessary. Then, identifying

η ≡ 2σ, (B.38)

one recovers exactly the set of deformed equations (B.6).
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